This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Tampilkan postingan dengan label MATERI EKONOMETRIKA 2 (LOGIT). Tampilkan semua postingan
Tampilkan postingan dengan label MATERI EKONOMETRIKA 2 (LOGIT). Tampilkan semua postingan

17 Juni 2013

INTERPRETASI OUTPUT ANALISIS REGRESI LOGISTIK

Seperti yang telah saya janjikan pada saat menyampaikan langkah-langkah Analisis regresi Logistik, kali saya akan coba menyampaikan interpretasi dari Output yang kita hasilkan. Apabila ingin membaca kembali mengenai konsep dari analisis regresi logistik berikut linknya saya berikan dengan mengklik reglog. Interpretasi ini akan saya bagi menjadi beberapa poin. Pertama, pengujian secara keseluruhan (overall test). Kedua, pengujian secara parsial (partial test). Dan, bagian terakhir terkait dengan goodness of fit (kelayakan dan kesesuaian model). Soal yang saya gunakan masih sama dengan yang dikerjakan pada langkah-langkah analisis regresi yaitu:











  
 
Ok…mungkin saat ini kita putuskan dulu ya, kita memilih model yang kedua yang akan kita gunakan untuk interpretasi odds ratio. Namun, perlu diyakinkan ini bukan suatu kesimpulaan yang mutlak. Artinya, anda bebas menetapkan mana model yang digunakan selama secara kriteria kelayakan (substansi dan statistik) itu terpenuhi. Itulah seninya, the art of statistics.=)
Interpretasi odds ratio
Seperti yang pernah disampaikan, pada reglog koefisiennya akan sulit diinterpretasi secara langsung. Kita akan menginterpretasi lewat angka odds ratio (yang di shading biru pada variables in the equation).
Dari Exp (B1) = 1.045 --> Semakin lama durasi operasi seseorang maka kecendrungannya untuk terkena sore throat ketika bangun meningkat. (cara interpretasi variabel kuantitatif)
Dari Exp (B2) = 0.127 --> kecendrungan seseorang yang menggunakan tracheal tube untuk terkena sore throat ketika bangun 0.127 kalinya jika dibandingkan seseorang yang menggunakan laryngeal mask airway. (cara interpretasi variabel kualitatif)
Atau dapat juga dimaknai Dari Exp (-B3) = 7.88 --> kecendrungan seseorang yang menggunakan laryngeal mask airway untuk terkena sore throat ketika bangun hampir 8 kalinya jika dibandingkan seseorang yang menggunakan tracheal tube.
Terimakasih telah membaca… Sukses Selalu buat teman semua … 

TUTORIAL SPSS ANALISIS REGRESI LOGISTIK BINER

Minggu yang lalu, saya telah menyampaikan mengenai konsep dari analisis regresi logistik biner. Pada minggu ini, saya akan coba melanjutkan pembahasan berkaitan dengan langkah-langkah pengolahan nya dengan menggunakan bantuan program SPSS. Langkah-langkahnya adalah sebagai berikut:
1.      Buka lah program SPSS yang anda miliki

2.    Input data nya -->sebagai contoh, data yang saya gunakan adalah data latihan dari buku Categorical Data Analysis (Alan Agresti, 2007, edisi 2 --> halaman 132), pada kasus saya variabel penjelasnya ada 2 (Durasi skala rasio dan T dengan skala nominal) dan variabel terikatnya Y dalam bentuk nominal (terdiri atas 2 kategori-->biner)

3.   Pilih opsi variabel view, lalu ubahlah variabel name dan label-nya sesuai dengan kasus masing-masing. Saat ini, saya akan menggubah nama menjadi D, T dan Y misalnya. Kemudian Values nya disesuaikan nilainya. Bila data berbentuk nominal atau ordinal (misalnya untuk T dan Y),  measure nya diganti dari scale menjadi nominal.

4.      Data telah beres, kemudian pilih opsi Analyze > Regression > Binary Logistics

5.      Masukkan Y sebagai variabel Dependent dan D serta T sebagai covariates. Untuk Method nya saat ini saya masih tetap menggunakan enter.

6.      Karena T berbentuk kategorik, maka harus ditetapkan reference Category nya dengan cara memilih opsi Categorical. Untuk kemudahan interpretasi biasanya saya memilih first untuk reference nya.  Artinya setiap kategori akan diperbandingkan dengan kategori pertama. Kemudian JANGAN LUPA pilih change. Klik Continue.

7.  Pilih options. Kemudian centang hosmer lemeshow dan classification plots dan klik continue. Kemudian OK.

Ok...Untuk Interpretasi Outputnya silahkan membaca postingan berikutnya yang berjudul : Analisis Regresi Logistik (interpretasi). Terimakasih telah membaca...

24 April 2013

REGRESI BINARY LOGIT

 

Sebagai kelanjutan dari tulisan mengenai model pilihan kualitatif, pada bagian ini, akan dijelaskan contoh model binary logit dan estimasinya dengan menggunakan program SPSS. Sebagai contoh ilustratif, misalnya ingin diprediksi pengaruh umur, jenis kelamin dan pendapatan terhadap pembelian mobil. Berdasarkan hasil survai terhadap 48 responden, didapatkan datanya sebagai berikut:



Dimana:
Y = 1, jika konsumen membeli mobil, = 0 jika konsumen tidak membeli mobil
X1 = umur responden dalam tahun
X2 = 1, jika konsumen berjenis kelamin wanita, = 0 jika konsumen berjenis kelamin pria
X3 = 0, jika konsumen berpendapatan rendah, = 1 jika konsumen berpendapatan sedang
= 2 jika konsumen berpendapatan tinggi
Tahapan-tahapan estimasi dalam SPSS sebagai berikut:
1. Setelah data diinput dalam lembar kerja SPSS kemudian klik Analyze > Regression > Binary Logistic , selanjutnya akan muncul tampilan berikut:



2. Masukkan Y sebagai variable dependent dengan cara klik Y di kotak kiri, kemudian klik tanda panah disamping kotak Dependent. Masukkan X1, X2 dan X3 kedalam kotak Covariates, dengan cara klik masing-masing variable, kemudian klik tanda panah disamping kotak covariates.
3. Selanjutnya, karena variabel X3 merupakan peubah kategori (ordinal) dengan lebih dari dua kategori (yaitu 0=pendapatan rendah, 1=pendapatan sedang dan 2=pendapatan tinggi) maka diubah terlebih dahulu ke dalam 2 variabel dummy, untuk mengembangkan model yang logis dan mudah diinterpretasi, sebagai berikut: (ini sama dengan prosedur regresi dengan variabel bebas dummy sebelumnya)
X3_1 = 1, jika konsumen berpendapatan menengah
0, jika selainnya
X3_2 = 1, jika konsumen berpendapatan tinggi
0, jika selainnya
Dalam program SPSS untuk mengkonversi ini dengan cara klik Categorical dari tampilan diatas, maka akan muncul tampilan berikut:



Selanjutnya, klik X3, klik tanda panah disamping Categorical Covariates. Pilih Reference Category dengan First, kemudian klik Change dan Continue. Selanjutnya klik OK.

4. Akan keluar output SPSS untuk regresi logit sebagai berikut (disini hanya ditampilkan bagian-bagian terpenting saja yang akan dibahas):


 
Printout di tabel pertama diatas menjelaskan transformasi variabel X3 dengan kategori 0,1 dan 2 menjadi dua variabel dummy yaitu X3_1 dan X3_2. Seperti yang terlihat dari tabel tersebut, variabel X3_1 bernilai 1 untuk kategori 1 (pendapatan menengah) dan 0 untuk kategori lainnya. Variabel X3_2 bernilai 1 untuk kategori 2 (pendapatan tinggi) dan 0 untuk kategori lainnya. Dengan demikian, kategori 0 (pendapatan rendah) akan bernilai 0 baik pada variabel X3_1 dan X3_2.
Printout di tabel kedua diatas merupakan nilai Khi-kuadrat (χ2) dari model regresi. Sebagaimana halnya model regresi linear dengan metode OLS, kita juga dapat melakukan pengujian arti penting model secara keseluruhan. Jika metode OLS menggunakan uji F, maka pada model logit menggunakan uji G. Statistik G ini menyebar menurut sebaran Khi-kuadrat (χ2). Karenanya dalam pengujiannya, nilai G dapat dibandingkan dengan nilai χ2 tabel pada α tertentu dan derajat bebas k-1. (kriteria pengujian dan cara pengujian persis sama dengan uji F pada metode regresi OLS). Tetapi, kita juga bisa melihat nilai p-value dari nilai G ini yang biasanya ditampilkan oleh sofware-software statistik, termasuk SPSS.
Dari output SPSS, didapatkan nilai χ2 sebesar 18,131 dengan p-value 0,001. Karena nilai ini jauh dibawah 10 % (jika menggunakan pengujian dengan α=10%), atau jauh dibawah 5% (jika menggunakan pengujian dengan α=5%), maka dapat disimpulkan bahwa model regresi logistik secara keseluruhan dapat menjelaskan atau memprediksi keputusan konsumen dalam membeli mobil.
Printout di tabel ketiga memberikan estimasi koefisien model dan pengujian hipotesis parsial dari koefisien model. Dalam pelaporannya, model regresi logistiknya dapat dituliskan sebagai berikut:


 
Dari output SPSS diatas menjadi sebagai berikut:


 
Model ini merupakan model peluang membeli mobil [(P(xi)] yang dipengaruhi oleh faktor-faktor umur, jenis kelamin dan pendapatan. Model tersebut adalah bersifat non-linear dalam parameter. Selanjutnya, untuk menjadikan model tersebut linear, dilakukan transformasi dengan logaritma natural, (transformasi ini yang menjadi hal penting dalam regresi logistik dan dikenal dengan istilah ”logit transformation”), sehingga menjadi (pembahasan lebih rinci, silakan dibaca buku-buku ekonometrik):


 
1-P(xi) adalah peluang tidak membeli mobil, sebagai kebalikan dari P(xi) sebagai peluang membeli mobil. Oleh karenanya, ln [P(xi)/1-P(xi)] secara sederhana merupakan log dari perbandingan antara peluang membeli mobil dengan peluang tidak membeli mobil. Oleh karenanya juga, koefisien dalam persamaan ini menunjukkan pengaruh dari umur, jenis kelamin dan pendapatan terhadap peluang relative individu membeli mobil yang dibandingkan dengan peluang tidak membeli mobil.
Selanjutnya, untuk menguji faktor mana yang berpengaruh nyata terhadap keputusan pilihan membeli mobil tersebut, dapat menggunakan uji signifikansi dari parameter koefisien secara parsial dengan statistik uji Wald, yang serupa dengan statistik uji t atau uji Z dalam regresi linear biasa, yaitu dengan membagi koefisien terhadap standar error masing-masing koefisien.
Dari output SPSS ditampilkan nilai Wald dan p-valuenya. Berdasarkan nilai p-value (dan menggunakan kriteria pengujian α=10%), dapat dilihat seluruh variabel (kecuali X3_1), berpengaruh nyata (memiliki p-value dibawah 10%) terhadap keputusan membeli mobil.
Lalu, bagaimana interpretasi koefisien regresi logit dari persamaan di atas ? Dalam model regresi linear, koefisien βi menunjukkan perubahan nilai variabel dependent sebagai akibat perubahan satu satuan variabel independent. Hal yang sama sebenarnya juga berlaku dalam model regresi logit, tetapi secara matematis sulit diinterpretasikan.
Koefisien dalam model logit menunjukkan perubahan dalam logit sebagai akibat perubahan satu satuan variabel independent. Interpretasi yang tepat untuk koefisien ini tentunya tergantung pada kemampuan menempatkan arti dari perbedaan antara dua logit. Oleh karenanya, dalam model logit, dikembangkan pengukuran yang dikenal dengan nama odds ratio (ψ). Odds ratio untuk masing-masing variabel ditampilkan oleh SPSS sebagaimana yang terlihat tabel diatas (kolom Exp(B)).
Odds ratio dapat dirumuskan: ψ = eβ, dimana e adalah bilangan 2,71828 dan β adalah koefisien masing-masing variabel. Sebagai contoh, odds ratio untuk variabel X2 = e-0.1602 = 0,201 (lihat output SPSS).
Dalam kasus variabel X2 (jenis kelamin dimana 1 = wanita dan 0 = pria), dengan odds ratio sebesar 0,201 dapat diartikan bahwa peluang wanita untuk membeli mobil adalah 0,201 kali dibandingkan pria, jika umur dan pendapatan mereka sama. Artinya wanita memiliki peluang lebih rendahi dalam membeli mobil dibandingkan pria.
Dalam kasus variabel X1 (umur), dengan odds ratio sebesar 1,153 dapat diartikan bahwa konsumen yang berumur lebih tua satu tahun peluang membeli mobilnya adalah 1,153 kali dibandingkan konsumen umur yang lebih muda (satu tahun), jika pendapatan dan jenis kelamin mereka sama. Artinya orang yang lebih tua memiliki peluang yang lebih tinggi dalam membeli mobil.
Dalam konteks umur ini (yang merupakan variabel dengan skala ratio), hati-hati menginterpretasikan nilai perbedaan peluangnya. Jika perbedaan umur lebih dari 1 tahun, misalnya 10 tahun, maka odds rationya akan menjadi 4,14, yang diperoleh dari perhitungan sbb: ψ=e(10 x 0.142) . Artinya peluang membeli mobil konsumen yang berumur lebih tua 10 tahun adalah 4,14 kali dibandingkan konsumen yang lebih muda (10 tahun) darinya.
Selanjutnya, dalam konteks variabel pendapatan, terlihat bahwa X31 tidak berpengaruh signifikan. Artinya, peluang membeli mobil antara konsumen pendapatan sedang dan pendapatan rendah adalah sama saja. Sebaliknya, untuk X32, dapat diinterpretasikan bahwa peluang membeli mobil konsumen pendapatan tinggi adalah 6,45 kali dibandingkan pendapatan rendah, jika umur dan jenis kelaminnya sama.