20 Agustus 2013

REGRESI & KORELASI

Istilah regresi pertama kali diperkenalkan oleh Sir Francis Galton pada tahun 1886. Galton menemukan adanya tendensi bahwa orang tua yang memiliki tubuh tinggi memiliki anak-anak yang tinggi, orang tua yang pendek memiliki anak-anak yang pendek pula. Kendati demikian. Ia mengamati bahwa ada kecenderungan tinggi anak cenderung bergerak menuju rata-rata tinggi populasi secara keseluruhan. Dengan kata lain, ketinggian anak yang amat tinggi atau orang tua yang amat pendek cenderung bergerak kearah rata-rata tinggi populasi. Inilah yang disebut hokum Golton mengenai regresi universal. Dalam bahasa galton, ia menyebutkan sebagai regresi menuju mediokritas.
Blognya Azwar - Kejujuran dan Kebijaksanaan, itulah judul yang bisa saya angkat pada kesempatan kali ini. Berkenaan soal kejujuran dan kebijaksanaan maka tak terlepas  kelakuan kita dalam kehidupan sehari-harinya. Hal itu sangat penting untuk kita ketahui dan diterapkan dalam kehidupan bermasyarakat kita, guna menjaga keharmonisan dalam bersosialisasi. Untuk itulah saya akan memberikan sedikit referensi tentang pengertian Kejujuran dan Kebijaksanaan lewat artikel ini. Silahkan anda simak berikut ini. - See more at: http://azwarsuaib.blogspot.com/2013/06/kejujuran-dan-kebijaksanaan.html#sthash.Bw8IGVJn.dpuf
regresi
Hukum regresi semesta (law of universal regression) dari Galton diperkuat oleh temannya Karl Pearson, yang mengumpulkan lebih dari seribu catatan tinggi anggota kelompok keluarga. Ia menemukan bahwa rata-rata tinggi anak laki-laki kelompok ayah (yang) pendek lebih besar dari pada tinggi ayah mereka, jadi “mundurnya” (“regressing”) anak laki-laki yang tinggi maupun yang pendek serupa kea rah rata-rata tinggi semua laki-laki. Dengan kata lain Galton, ini adalah “kemunduran kea rah sedang”.

Secara umum, analisis regresi pada dasarnya adalah studi mengenai ketergantungan satu variabel dependen (terikat) dengan satu atau lebih variabel independent (variabel penjelas/bebas), dengan tujuan untuk mengestimasi dan/ atau memprediksi rata-rata populasi atau niiai rata-rata variabel dependen berdasarkan nilai variabe! independen yang diketahui. Pusat perhatian adalah pada upaya menjelaskan dan mengevalusi hubungan antara suatu variabel dengan satu atau lebih variabel independen.

Hasil analisis regresi adalah berupa koefisien regresi untuk masing-masing variable independent. Koefisien ini diperoleh dengan cara memprediksi nilai variable dependen dengan suatu persamaan. Koefisien regresi dihitung dengan dua tujuan sekaligus : Pertama, meminimumkan penyimpangan antara nilai actual dan nilai estimasi variable dependen; Kedua, mengoptimalkan korelasi antara nilai actual dan nilai estimasi variable dependen berdasarkan data yang ada. Teknik estimasi variable dependen yang melandasi analisis regresi disebut Ordinary Least Squares (pangkat kuadrat terkecil biasa).

KolerasiSedangkan pengertian Kolerasi.
Korelasi merupakan teknik analisis yang  termasuk dalam salah satu teknik pengukuran asosiasi / hubungan (measures of association). Pengukuran asosiasi   merupakan istilah umum yang mengacu pada sekelompok teknik dalam statistik bivariat yang digunakan untuk mengukur kekuatan hubungan antara dua variabel. Diantara sekian banyak teknik-teknik pengukuran asosiasi, terdapat dua teknik korelasi yang sangat populer sampai sekarang, yaitu Korelasi Pearson Product Moment dan Korelasi Rank Spearman. Selain kedua teknik tersebut, terdapat pula teknik-teknik korelasi lain, seperti Kendal, Chi-Square, Phi Coefficient, Goodman-Kruskal, Somer, dan Wilson.

Pengukuran asosiasi mengenakan nilai numerik untuk mengetahui tingkatan asosiasi atau kekuatan hubungan antara variabel. Dua variabel dikatakan berasosiasi jika perilaku variabel yang satu mempengaruhi variabel yang lain. Jika tidak terjadi pengaruh, maka kedua variabel tersebut disebut independen.

Korelasi bermanfaat untuk mengukur kekuatan hubungan antara dua variabel (kadang lebih dari dua variabel) dengan skala-skala tertentu, misalnya Pearson data harus berskala interval atau rasio; Spearman dan Kendal menggunakan skala ordinal; Chi Square menggunakan data nominal. Kuat lemah hubungan diukur diantara jarak (range) 0 sampai dengan 1. Korelasi mempunyai kemungkinan pengujian hipotesis dua arah (two tailed). Korelasi searah jika nilai koefesien korelasi diketemukan positif; sebaliknya jika nilai koefesien korelasi negatif, korelasi  disebut tidak searah. Yang dimaksud dengan koefesien korelasi ialah suatu pengukuran statistik kovariasi atau asosiasi antara dua variabel. Jika koefesien korelasi diketemukan tidak sama dengan nol (0), maka terdapat ketergantungan antara dua variabel tersebut. Jika  koefesien korelasi diketemukan +1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) positif.

Jika  koefesien korelasi diketemukan -1. maka hubungan tersebut disebut sebagai korelasi sempurna atau hubungan linear sempurna dengan kemiringan (slope) negatif.

Dalam korelasi sempurna tidak diperlukan lagi pengujian hipotesis, karena kedua variabel mempunyai hubungan linear yang sempurna. Artinya variabel X mempengaruhi variabel Y secara sempurna. Jika korelasi sama dengan nol (0), maka tidak terdapat hubungan antara kedua variabel tersebut. Dalam korelasi sebenarnya tidak dikenal istilah variabel bebas dan variabel tergantung. Biasanya dalam penghitungan digunakan simbol X untuk variabel pertama dan Y untuk variabel kedua. Dalam contoh hubungan antara variabel remunerasi dengan kepuasan kerja, maka variabel remunerasi merupakan variabel X dan kepuasan kerja merupakan variabel Y.

0 komentar:

Posting Komentar