Determinan dengan Minor dan kofaktor
-
- A =
- tentukan determinan A
-
- M11 = = detM = a22a33 x a23a32
-
- c11 = (-1)1+1M11 = (-1)1+1a22a33 x a23a32
-
- M32 =
- = detM = a11a23 x a13a21
-
- c32 = (-1)3+2M32 = (-1)3+2 x a11a23 x a13a21
-
- det(A) = a11C11+a12C12+a13C13
[sunting] Determinan dengan Ekspansi Kofaktor Pada Baris Pertama
Misalkan ada sebuah matriks A3x3-
- A =
-
- det(A) = a11 - a12 + a13
-
- = a11(a22a33 - a23a32) - a12(a21a33 - a23a31) + a13(a21a32 - a22a31)
- = a11a22a33 + a12a23a31 + a13a21a32 - a13a22a31 - a12a21a33 - a11a23a32
-
- det(A) = a11 - a12 + a13
-
- A =
- tentukan determinan A dengan metode ekspansi kofaktor baris pertama
-
- det(A) = = 1 - 2 + 3 = 1(-3) - 2(-8) + 3(-7) = -8
[sunting] Determinan dengan Ekspansi Kofaktor Pada Kolom Pertama
Pada dasarnya ekspansi kolom hampir sama dengan ekspansi baris seperti di atas. Tetapi ada satu hal yang membedakan keduanya yaitu faktor pengali. Pada ekspansi baris, kita mengalikan minor dengan komponen baris pertama. Sedangkan dengan ekspansi pada kolom pertama, kita mengalikan minor dengan kompone kolom pertama.Misalkan ada sebuah matriks A3x3
-
- A =
-
- det(A) = a11 - a21 + a31
-
- = a11(a22a33 - a23a32) - a21(a21a33 - a23a31) + a31(a21a32 - a22a31)
- = a11a22a33 + a21a23a31 + a31a21a32 - a22(a31)2 - (a21)2a33 - a11a23a32
-
- det(A) = a11 - a21 + a31
-
- A =
- tentukan determinan A dengan metode ekspansi kofaktor kolom pertama
-
- det(A) = = 1 - 4 + 3 = 1(-3) - 4(-8) + 3(-7) = 8
[sunting] Adjoin Matriks 3 x 3
Bila ada sebuah matriks A3x3-
- A =
-
- C11 = 12 C12 = 6 C13 = -16
- C21 = 4 C22 = 2 C23 = 16
- C31 = 12 C32 = -10 C33 = 16
-
- adj(A) =
[sunting] Determinan Matriks Segitiga Atas
Jika A adalah matriks segitiga nxn (segitiga atas, segitiga bawah atau segitiga diagonal) maka det(A) adalah hasil kali diagonal matriks tersebut-
- = (2)(-3)(6)(9)(4) = -1296
[sunting] Metode Cramer
jika Ax = b adalah sebuah sistem linear n yang tidak di ketahui dan det(A)≠ 0 maka persamaan tersebut mempunyai penyelesaian yang unikContoh soal:
Gunakan metode cramer untuk menyelesaikan persoalan di bawah ini
-
- x1 + x3 = 6
-
- -3x1 + 4x2 + 6x3 = 30
-
- -x1 - 2x2 + 3x3 = 8
bentuk matrik A dan b
-
- A = b =
-
- A1 = A2 = A3 =
maka,
[sunting] Tes Determinan untuk Invertibilitas
Pembuktian: Jika R di reduksi secara baris dari Ä. Sebagai langkah awal, kita akan menunjukkan bahwa det(A) dan det(R) keduanya adalah nol atau tidak nol: E1,E2,...,Er menjadi matrix element yang berhubungan dengan operasi baris yang menghasilkan Rdari A. Maka,Contoh Soal :
[sunting] Mencari determinan dengan cara Sarrus
-
- A = tentukan determinan A
-
- detA = (aei + bfg + cdh) - (bdi + afh + ceg)
[sunting] Metode Sarrus hanya untuk matrix berdimensi 3x3
[sunting] Menghitung Inverse dari Matrix 3 x 3
-
- A =
C11 = 12 C12 = 6 C13 = -16
C21 = 4 C22 = 2 C23 = 16
C31 = 12 C32 = -10 C33 = 16
menjadi matrix kofaktor
-
- adj(A) =
dengan metode Sarrus, kita dapat menghitung determinan dari matrix A
det(A) = 64
[sunting] Sistem Linear Dalam Bentuk Ax = λx
dalam sistem aljabar linear sering ditemukanAx = λx ; dimana λ adalah skalarsistem linear tersebut dapat juga ditulis dengan λx-Ax=0, atau dengan memasukkan matrix identitas menjadi
(λI - A) x = 0contoh:
diketahui persamaan linear
x1 + 3x2 = λx1 4x1 + 2x2 = λx2dapat ditulis dalam bentuk
= λyang kemudian dapat diubah
-
- A =dan x =
λ
λ
sehingga didapat bentuk
λ I - A =namun untuk menemukan besar dari λ perlu dilakukan operasi
det (λ I - A) = 0 ;λ adalah eigenvalue dari Adan dari contoh diperoleh
det (λ I - A) = = 0atau λ^2 - 3λ - 10 = 0
dan dari hasil faktorisasi di dapat λ1 = -2 dan λ2 = 5
dengan memasukkan nilai λ pada persamaan (λ I - A) x = 0, maka eigenvector bisa didapat bila λ = -2 maka diperoleh
dengan mengasumsikan x2 = t maka didapat x1 = t
x =
0 komentar:
Posting Komentar